
Mockservr Documentation
Release latest

Jul 16, 2020

Contents

1 Summary 3
1.1 Quickstart . 3

1.1.1 System requirements . 3
1.1.2 Running with docker . 3
1.1.3 Running with docker-compose . 3

1.2 HTTP Mocking . 4
1.2.1 Overview . 4
1.2.2 Endpoint . 5
1.2.3 Request . 8
1.2.4 Response . 16

1.3 Validators . 24
1.3.1 equal Validator . 24
1.3.2 range Validator . 25
1.3.3 regex Validator . 26
1.3.4 anyOf Validator . 26
1.3.5 object Validator . 27
1.3.6 typeOf Validator . 27

1.4 API . 28
1.4.1 API Endpoints . 28

i

ii

Mockservr Documentation, Release latest

Mockservr is an API mocking system, allowing to configure endpoints, specifying requests details and responses.

• YAML or JSON endpoint configuration

• Manage endpoint configuration with API

• Ability to use Apache Velocity Template files to dynamically adapt responses to requests parameters

• Available under docker image, see dockerhub to be easily integrated into a development / test stack

Using Mockservr gives the ability to avoid real API calls to external providers, while ensuring that the code carries no
logic related to the environment.

Contents 1

Mockservr Documentation, Release latest

2 Contents

CHAPTER 1

Summary

1.1 Quickstart

Mockservr is designed to be as user-friendly as possible, hence it can be integrated into an existing stack really quickly,
immediately providing a way to mock APIs.

1.1.1 System requirements

In order to run mockservr in the easiest way, we provide docker images.

The minimum requirements on the host system are:

• Docker >= 18 (https://www.docker.com/)

1.1.2 Running with docker

One way of running Mockservr is through Docker.

docker run -p 8080:80 -p 4580:4580 -v /mocks-directory:/usr/src/app/mocks rvip/
→˓mockservr

From now, all defined mocks will be accessible through http://localhost:8088.

1.1.3 Running with docker-compose

Assuming your stack runs using docker-compose, Mockservr can be easily integrated in your docker-compose.yaml
file :

3

https://www.docker.com/

Mockservr Documentation, Release latest

services:
...

mockservr:
image: rvip/mockservr
volumes:
- ./mocks-directory:/usr/src/app/mocks

ports:
- 8088:80
- 4580:4580

From now on, all defined mocks will be accessible through http://localhost:8088.

1.2 HTTP Mocking

Mockservr allows you to mock HTTP endpoints, defined through YAML/JSON files. Usin HTTP Mocking, you can
easily and rapidely mock any HTTP based API.

1.2.1 Overview

As for any mock in Mockservr, it must be defined in a YAML/JSON file, with the .mock.yaml or mock.yml or mock.json
file extension.

HTTP endpoints are defined under a single object, named http, which should contain an array of endpoints.

Accessing the HTTP endpoints

Once Mockservr is up and running as described in Quickstart, it is possible to access the endpoints through your
localhost and the port 8080.

Note: The port on which Mockservr can be reached through HTTP can be customized, either by using the -p option
if running with Docker (see Running with docker) or by using the services.XX.port option if running under docker-
compose (see Running with docker-compose).

Defining the HTTP endpoints

There are two ways to define the HTTP endpoints in the Mockservr.

• Describe endpoints in an array under http in a YAML/JSON file

• Use API

Example of endpoints mock file

Using an array of objects under http will define endpoints for the mock:

4 Chapter 1. Summary

Mockservr Documentation, Release latest

Listing 1: YAML

http:
-
request:
path: '/foo'

response:
body: 'Hello World!'

-
request:
path: '/bar'

response:
body: 'Hello bar!'

Listing 2: JSON

{
"http": [
{

"request": {
"path": "/foo"

},
"response": {

"body": "Hello World!"
}

},
{

"request": {
"path": "/bar"

},
"response": {

"body": "Hello bar!"
}

}
]

}

These endpoints are then accessible through HTTP:

curl -XGET 'http://localhost:8080/foo'
curl -XGET 'http://localhost:8080/bar'

Note: It is possible to define a single endpoint for a mock, by using an object instead of an array under http.

1.2.2 Endpoint

An Endpoint is defined as one or more responses that correspond to one or more requests, all of them defined under
http. If http is an array, then each element is an Endpoint. If http is an object, then the object is the only endpoint of
the mock.

An Endpoint defines at least a request and an response property.

1.2. HTTP Mocking 5

Mockservr Documentation, Release latest

Mandatory properties

request option

More details about the request option are availble in Request.

response option

More details about the response option are available in Response.

Endpoint Options

crossOrigin option

The crossOrigin option enables cross origin requests on Mockservr. This value can either be a boolean or an object.

Listing 3: YAML

http:
crossOrigin: true
request:
path: '/foo'

response:
body: 'Hello World!'

Listing 4: JSON

{
"http": {
"crossOrigin": true
"request": {

"path": "/foo"
},
"response": {
"body": "Hello World!"

}
}

}

If a boolean is given, it will authorize HTTP OPTION requests on the endpoint.

The default response to the OPTION method is the following JSON:

Listing 5: JSON

{
"headers": {

"access-control-allow-credentials": true,
"access-control-allow-headers": "request.headers['access-control-request-headers

→˓'] || '*'",
"access-control-allow-methods": "GET,HEAD,POST,PUT,DELETE,CONNECT,OPTIONS,TRACE,

→˓PATCH",
"access-control-allow-origin": "*",
"access-control-max-age": 3600

(continues on next page)

6 Chapter 1. Summary

Mockservr Documentation, Release latest

(continued from previous page)

},
"body": ""

}

Note: The value of access-control-allow-headers is either equal to the request’s access-control-request-headers
header if defined or * (allowing all headers).

If crossOrigin option is an object, it must be a Response object (see Response for more information about Response’s
options). It overrides the default response as defined above.

Note: All headers defined within the crossOrigin options will be present in the response sent by Mockservr to any
incoming HTTP request that matches the endpoint. These headers can be overwritten using the headers option of the
response object.

maxCalls option

The maxCalls option defines a maximum calls count for a given Endpoint. It does not provide validator inference, as
the only possible value is a plain integer.

Listing 6: YAML

http:
maxCalls: 5
request:
path: '/foo'

response:
body: 'Hello World!'

Listing 7: JSON

{
"http": {
"maxCalls": 5
"request": {

"path": "/foo"
},
"response": {

"body": "Hello World!"
}

}
}

In the above example, the Endpoint is going to be positively matched 5 times. When the 6th call arrives, Mockservr
will not match it positively against this Endpoint.

rateLimit option

The rateLimit option may either be a plain integer or an object. If a plain integer, it is the maximum number of
accepted calls on this endpoint within one second. If an object, it must define a callCount property which is a plain

1.2. HTTP Mocking 7

Mockservr Documentation, Release latest

integer defining the number of accepted calls and a interval property defining the time window in milliseconds in
which the callCount lies.

Listing 8: YAML

http:
rateLimit:
callCount: 2
interval: 5000

request: '/foo'
response: 'Hello World!'

Listing 9: JSON

{
"http": {
"rateLimit": {
"callCount": 2,
"interval": 5000

},
"request": "/foo",
"response": "Hello World!"

}
}

In the above example, the API has a rate limit of 2 calls every 5 seconds.

Note: It is possible to add a custom Response in the html.rateLimit object.

1.2.3 Request

This section covers the http.request part of the endpoint definition ; it defines how Mockservr will match the incoming
HTTP requests, and what response it will serve to the client.

Request Definition

The http.request may either be a string, an object or an array.

Mockservr comes with a inference feature, which means, if you do not explicitly define full request options to use,
Mockservr will guess it for you.

Basic definition of a Request

The simpliest way to define a Request is by only defining its path. Mockservr allows you to write this path directly
under http.request, using a string, such as:

Listing 10: YAML

http:
request: '/foo'
response:
body: 'Hello World!"

8 Chapter 1. Summary

Mockservr Documentation, Release latest

Listing 11: JSON

{
"http": {
"request": "/foo",
"response": {

"body": "Hello World!"
}

}
}

The endpoint is then accessible through HTTP:

curl -XGET 'http://localhost:8080/foo'

Note: This way to define an endpoint is equal to:

Listing 12: YAML

http:
request:
-
path: '/foo'

response:
body: 'Hello World!'

Listing 13: JSON

{
"http": {
"request": [
{

"path": "/foo"
}

],
"response": {

"body": "Hello World!"
}

}
}

Defining a single Request

If your endpoint must react to a single type of Request, then you can use an object to define it. To learn about all
possible options to define the Request, please see ‘Requests Options‘http_mocking_request_options_.

Listing 14: YAML

http:
request:
path: '/foo'

response:
body: 'Hello World!'

1.2. HTTP Mocking 9

Mockservr Documentation, Release latest

Listing 15: JSON

{
"http": {
"request": {
"path": "/foo"

},
"response": {

"body": "Hello World!"
}

}
}

The endpoint is then accessible through HTTP:

curl -XGET 'http://localhost:8080/foo'

Note: This way to define an endpoint is equal to:

Listing 16: YAML

http:
request:
-
path: '/foo'

response:
body: 'Hello World!'

Listing 17: JSON

{
"http": {
"request": [
{

"path": "/foo"
}

],
"response": {

"body": "Hello World!"
}

}
}

Defining multiple Request

In case your endpoint should serve a similar Response to requests that may have different shapes, you can define
multiple matching Requests for the endpoint, by using an array.

Listing 18: YAML

http:
request:

(continues on next page)

10 Chapter 1. Summary

Mockservr Documentation, Release latest

(continued from previous page)

-
path: '/foo'

-
path: '/bar'

response:
body: 'Hello World!'

Listing 19: JSON

{
"http": {
"request": [
{

"path": "/foo"
},
{

"path": "/bar"
}

],
"response": {

"body": "Hello World!"
}

}
}

The endpoint is then available through different HTTP requests:

curl -XGET 'http://localhost:8080/foo'
curl -XGET 'http://localhost:8080/bar'

Request Options

This section describes all the options available for a Request. For an incoming HTTP request to match a defined
Request, it must match positively against all options.

The options are defined under the request object of an HTTP endpoint.

Most option can be described as a Validators, but may also be described as a scalar value, for which Mockservr will
perform validator inference.

Defining multiple sets of options for a single Request

It is possible to describe multiple sets of options to describe a Request. To do so, the request must be an array of
objects instead of a single object.

For each incoming HTTP request, Mockservr will try to match against all different Requests that have been defined.

It allows you to describe several ways to reach a single endpoint.

Listing 20: YAML

http:
request:
-

(continues on next page)

1.2. HTTP Mocking 11

Mockservr Documentation, Release latest

(continued from previous page)

path: '/foo'
-

path: '/bar'
response:

body: 'Hello World!'

Listing 21: JSON

{
"http": {
"request": [
{

"path": "/foo"
},
{

"path": "/bar"
}

]
"response": {

"body": "Hello World!"
}

}
}

Then, the two following HTTP requests will lead to the same response:

curl -XGET 'http://localhost:8080/foo'
curl -XGET 'http://localhost:8080/bar'

path option (required)

The path option defines on which path the endpoint can be reached. The path option matching is powered by path-to-
regexp.

Listing 22: YAML

http:
request:
path: '/foo/:id'

response:
body: 'Hello World!'

Listing 23: JSON

{
"http": {
"request": {
"path": "/foo/:id",

},
"response": {

"body": "Hello World!"
}

}
}

12 Chapter 1. Summary

https://github.com/pillarjs/path-to-regexp
https://github.com/pillarjs/path-to-regexp

Mockservr Documentation, Release latest

The example above is an endpoint reachable on the /foo/[id] path of Mockservr (typically http://localhost:8080)

curl -XGET 'http://localhost:8080/foo/1'

basepath option

The basepath option allows to define the base path of the request. It is mainly useful to group requests by their base
path in the Mockservr GUI. basepath will concat with path option before matching

Listing 24: YAML

http:
request:
basepath: '/foo'
path: '/:id'

response:
body: 'Hello World!'

Listing 25: JSON

{
"http": {
"request": {
"basepath": "/foo",
"path": "/:id"

},
"response": {

"body": "Hello World!"
}

}
}

curl -XGET 'http://localhost:8080/foo/1'

body option

The body option allows you to define what the incoming HTTP request’s body must look like. For it to be working as
an object, the Content-Type header must be defined as application/x-www-form-urlencoded or as application/json. If
not it will be working as string.

All types of Validators may be used with the body option. In case the body is a JSON or a form, it is possible to use
an object under body. If not defined body will match any incoming request.

Listing 26: YAML

http:
request:
path: '/foo'
body:
name: 'John'
last_name: ['Doe', 'Bar']

response:
body: 'Hello World!'

1.2. HTTP Mocking 13

Mockservr Documentation, Release latest

Listing 27: JSON

{
"http": {
"request": {
"path": "/foo",
"body": {

"name": "John",
"last_name": ["Doe", "Bar"]

}
},
"response": {

"body": "Hello World!"
}

}
}

In the above example, the JSON or form body must define two key/value pairs: The first one is name and its value
must be “John” (the equal validator is automatically inferred) ; the second one is last_name and its value must either
be “Doe” or “Bar” (the anyOf validator is automatically inferred).

The incoming request’s body may also be a simple string or any other scalar then the equal validator is automatically
inferred.

Listing 28: YAML

http:
request:
path: '/foo'
body: "Hello"

response:
body: 'Hello World!'

Listing 29: JSON

{
"http": {
"request": {
"path": "/foo",
"body": "Hello"

},
"response": {
"body": "Hello World!"

}
}

}

headers option

The headers options allows the control of the incoming HTTP request. It must be an object be an object with
key/value pairs. The key is the header’s name, and the value is the expected value.

Each object’s property value can be any type of Validators, allowing a fine-grain control of the headers. If not defined
headers, will match any incoming request.

14 Chapter 1. Summary

Mockservr Documentation, Release latest

Listing 30: YAML

http:
request:
path: '/foo'
headers:
Content-Type: ['application/json', 'application/x-www-form-urlencoded']

response:
body: 'Hello World!'

Listing 31: JSON

{
"http": {
"request": {

"path": "/foo",
"headers": ['application/json', 'application/x-www-form-urlencoded']

},
"response": {

"body": "Hello World!"
}

}
}

In the above example, the endpoint will be triggered in the incoming HTTP request contains a Content-Type header
and if its value is either application/json or application/x-www-form-urlencoded (the anyOf validator is automatically
inferred).

method option

The method option defines which type of HTTP requests will match positively with the endpoint. Apart of the usual
HTTP verbs (GET, POST, . . .), it is possible to set custom HTTP verbs.

Each object’s property value can be any type of Validators, allowing a fine-grain control of the incoming query param-
eters. If not defined, query will match any incoming request.

Listing 32: YAML

http:
request:
path: '/foo'
method: ['GET', 'POST']

response:
body: 'Hello World!'

Listing 33: JSON

{
"http": {
"request": {
"path": "/foo",
"method": ["GET", "POST"]

},
"response": {

"body": "Hello World!"

(continues on next page)

1.2. HTTP Mocking 15

Mockservr Documentation, Release latest

(continued from previous page)

}
}

}

The Request defined above will match positively against any incoming HTTP request which is a GET or a POST
request (the anyOf validator is automatically inferred).

query option

The query option defines how the incoming HTTP request’s query parameters will be matched. It must be an object
in which each key/value pair correspond to a query parameter/value.

The value in each key/value pair is a Validators. If not defined query will match any incoming request.

Listing 34: YAML

http:
request:
path: '/foo'
query:

action: 'show'
id:

type: 'typeOf'
Value: 'number'

response:
body: 'Hello World!'

Listing 35: JSON

{
"http": {
"request": {
"path": "/foo",
"query": {

"action": "show",
"id": {
"type": "typeOf",
"value": "number"

}
}

},
"response": {
"body": "Hello World!"

}
}

}

To match the above Request, the incoming HTTP request must be of the form /foo?action=show&id=3

1.2.4 Response

When Mockservr matches an incoming HTTP request to a Request defined in an endpoint, it will send back a HTTP
response. The definition of this response lies into the http.response object.

16 Chapter 1. Summary

Mockservr Documentation, Release latest

It is possible to define several Responses for an endpoint and the way Mockservr should pick one of Responses from
the incoming HTTP request.

Response Definition

A Response is defined by a set of options that describe Mockservr how to build the HTTP response to an incoming
HTTP request that has been match successfully to the endpoint.

It is also possible to define several possible Responses for a single endpoint. To do so, http.response must be an array
of objects, each object defining a possible Response. In that case, each object must also contains some options that
will tell Mockservr how to pick the right Response ; otherwise, Mockservr will pick one of Response in the array.

Defining a single Response

Basically, an HTTP response is composed of a body and a status code. By default, the status code returned by
Mockservr is 200 if not defined otherwise.

A basic Response definition would be:

Listing 36: YAML

http:
request:
path: '/foo'

response:
body: 'Hello World!'

Listing 37: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": {

"body": "Hello World!"
}

}
}

This endpoint definition will match any incoming request on /foo, and the HTTP response’s body will be “Hello
World!” with HTTP status code 200.

Defining several possible Responses

Using an array instead of an object under http.response, it is possible to define several possible Response for a single
endpoint. It is then possible to give a weight to each of the Responses, and Mockservr will pick one of the Response
randomly, according to their respective weight.

Listing 38: YAML

http:
request:
path: '/foo'

(continues on next page)

1.2. HTTP Mocking 17

Mockservr Documentation, Release latest

(continued from previous page)

response:
-

body: 'Hello World!'
weight: 1

-
body: "Bye World!"
weight: 1

Listing 39: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": [

{
"body": "Hello World!",
"weight": 1

},
{
"body": "Bye World!",
weight: 1

}
]

}
}

For the endpoint defined above, Mockservr will pick a random Response ; as both their weights are 1, they’ll be pick
randomly with equal chances. See http_mocking_response_weight_option.

Response Options

Response options let you specify what content Mockservr will send as a response to a matching incoming HTTP
request.

body option

The body option lets you specify the body of the response. An object is expected but it can be a string.

Body object must have two attributes type and value. type must be plaintext or file. The plaintext type lets you specify
the response to send. The value attribute is the response body content. The file type lets you specify the path to a file
that contain the response to send. The file may be of any type, which lets you define JSON responses, XML responses,
pictures, . . . The value attribute is the path where to fetch the file, relatively to the mock file.

The incoming response body may also be a simple string then a plaintext type is automatically inferred.

Listing 40: YAML

http:
request:
path: '/foo'

response:
body: 'Hello World!'

18 Chapter 1. Summary

Mockservr Documentation, Release latest

Listing 41: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": {

"body": "Hello World!"
}

}
}

Listing 42: YAML

http:
request:
path: '/foo'

response:
body:
type: 'plaintext'
value: 'Hello World!'

Listing 43: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": {

"body": {
"type": "plaintext",
"value": "Hello World!"

}
}

}
}

In the previous examples, the response body will be Hello World!.

Listing 44: YAML

http:
request:
path: '/foo'

response:
body:
type: 'file'
value: './responses/foo/response.json'

Listing 45: JSON

{
"http": {

"request": {
(continues on next page)

1.2. HTTP Mocking 19

Mockservr Documentation, Release latest

(continued from previous page)

"path": "/foo"
},
"response": {

"body": {
"type": "file",
"value": "./responses/foo/response.json"

}
}

}
}

In the previous examples, the response file must be located in a responses/foo/ directory from the mock’s directory,
within a response.json file.

Note: For pictures, only the following mime types are allowed: image/gif, image/jpeg, image/pjpeg, image/x-png,
image/png, image/svg+xml.

delay option

The delay option lets you specify a delay (in ms) or a min-max range of delay (in milliseconds) after which the
response will be sent.

If the given value is a number, it will be considered as a fix delay. You can also specify an object with a min and a max
property which will respectively be the minimum and maximum delay time, in milliseconds.

Listing 46: YAML

http:
request:
path: '/foo'

response:
body: 'Hello, World!'
delay:
min: 20
max: 500

Listing 47: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": {

"body": "Hello, World!",
"delay": {
"min": 20,
"max": 500

}
}

}
}

20 Chapter 1. Summary

Mockservr Documentation, Release latest

headers option

The headers option lets you specify the headers sent along with the response. It is an object in which the key/value
pairs correspond the name/value pairs of the headers.

Listing 48: YAML

http:
request:
path: '/foo'

response:
body: 'Hello, World!'
headers:

Content-Type: 'text/plain'

Listing 49: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": {

"body": "Hello, World!",
"headers": {
"Content-Type": "text/plain"

}
}

}
}

status option

The status option lets you define the HTTP status code of the response.

Listing 50: YAML

http:
request:
path: '/foo'

response:
body: 'Not found'
status: 404

Listing 51: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": {

"body": "Not found",
"status": 404

}

(continues on next page)

1.2. HTTP Mocking 21

Mockservr Documentation, Release latest

(continued from previous page)

}
}

velocity option

Deprecated see Template.

template option

The template option either a boolean or an object. If a boolean, it tells mockservr if the value specified in response.body
or response.bodyFile is an template file and should be parsed by the default template engine.

If an object, it may define an enabled value which tells mockservr if it should parse the response body as a template
file. It may also define a context value which is an object. The values in this object will then be passed to the template
engine and thus be available in the template file. It may also define an engine value which is a string which defined
the engine to use for parse template file. available engines:

1. twig (default)

2. velocity

Velocity templates let you access some of the request’s parameters (such as query params and form data) and forge a
tailored response.

Listing 52: YAML

http:
request:
path: '/foo'

response:
bodyFile: './responses/foo/response.json'
template:
enabled: true
engine: velocity

Listing 53: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": {

"bodyFile": "./responses/foo/response.json",
"template": {
"enabled": true,
"engine": "velocity"

}
}

}
}

Note: Mockservr take advantage of the twig template library. Check out their website for more information.

22 Chapter 1. Summary

Mockservr Documentation, Release latest

Note: Mockservr take advantage of the ‘VelocityJS‘VelocityJS_ javascript library, which does not implement all
Velocity features. Check out their Github page for more information.

Note: More information about Apache Velocity template files can be found on Apache Velocity Documentation.

Note:

From within the Apache Velocity template, the following objects are available:

• a math object which is a Javascript Math object

• a req object which contains all data from the incoming HTTP request

• an endpoint which is the object representing the matched endpoint from the mock definition file

• a context which is the optional velocity.context object defined above

The endpoint object contains the parameters that were matched against the incoming HTTP request. It also contains
information about how the parameter was matched (e.g: boolean or regex’s capturing group).

weight option

In case you define multiple responses for a single Request, the weight option lets you put weights on responses so that
the random selection of a response will be biased by this weight. Weight are plain numbers.

Listing 54: YAML

http:
request:
path: '/foo'

response:
-

body: 'Hello World!'
weight: 10

-
body: "Bye World!"
weight: 1

Listing 55: JSON

{
"http": {

"request": {
"path": "/foo"

},
"response": [

{
"body": "Hello World!",
"weight": 10

},
{
"body": "Bye World!",

(continues on next page)

1.2. HTTP Mocking 23

http://velocity.apache.org/engine/2.0/user-guide.html

Mockservr Documentation, Release latest

(continued from previous page)

weight: 1
}

]
}

}

In the previous example, the “Hello World!” response will be sent by Mockservr 10 out of 11 times and the “By
World!” response 1 out of 11 times.

1.3 Validators

For an incoming HTTP to match a defined Request, it must be positively matched against all the options defined for
the endpoint in the mock file.

To perform this, you may use a Validator ; it is an object with two properties:

• type which defines the type of Validator to use

• value which is the expected value used by the Validator.

Mockservr comes with a Validator inference feature, which means, if you do not explicitly define which Validator to
use, Mockservr will guess it for you.

Inference transform rules :

• string will be transform in equal Validator

• number will be transform in equal Validator

• boolean will be transform in equal Validator

• array will be transform in anyOf Validator

• null will be transform in object Validator

• object that is not a validator will be transform in object Validator

1.3.1 equal Validator

The equal Validator performs an exact match between the expected value and the given one. This Validator is auto-
matically inferred when the value is a string, a number or a boolean value.

Example

For example, you can use the equal Validator to validate the method. All the following definitions are equals:

Using the equal Validator

Listing 56: YAML

http:
request:

path: '/foo'
method:

(continues on next page)

24 Chapter 1. Summary

Mockservr Documentation, Release latest

(continued from previous page)

type: 'equal'
value: 'GET'

response:
body: 'Hello World!'

Listing 57: JSON

{
"http": {

"request": {
"path": "/foo",
"method": {

"type": "equal",
"value": "GET"

}
},
"response": {
"body": "Hello World!"

}
}

}

Using the Validator inference

Listing 58: YAML

http:
request:

path: "/foo"
method: "GET"

response:
body: 'Hello World!'

Listing 59: JSON

{
"http": {

"request": {
"path": "/foo",
"method": "GET",

},
"response": {
"body": "Hello World!"

}
}

}

1.3.2 range Validator

The range Validator may be used to define a range in which the given value should lie. The value is an object composed
of two entries:

• min: The lower bound of the range (inclusive)

1.3. Validators 25

Mockservr Documentation, Release latest

• max: The upper bound of the range (inclusive)

Both ranges must be numbers (either integer or floats). An example of the range Validator can be is presented in query
option.

1.3.3 regex Validator

The regex Validator may be used to match a given value against a regular expression. As such, the value entry is the
given regular expression. References about Javascript Regular Expressions can be found on Mozilla.

An example of the regex Validator can be is presented in method option.

1.3.4 anyOf Validator

The anyOf Validator may be used to match one of several given values. Under the hood, Mockservr is performing
Validator inference ; it allows to use equals values (string, number, . . .) in the array. However, it is possible to use
Validators inside the array, giving you the possibility to use regular expression, for example.

Listing 60: YAML

http:
request:

path: "/foo"
method:
type: 'anyOf'
value:

- 'GET'
- 'POST'
-
type: 'regex'
value: '/^P.*$/'

response:
body: 'Hello World!'

Listing 61: JSON

{
"http": {

"request": {
"path": "/foo",
"method": {
"type": "anyOf",
"value": [
"GET",
"POST",
{
"type": "regex",
"value": "/^P.*$/"

}
]

}
},
"response": {
"body": "Hello World!"

}

(continues on next page)

26 Chapter 1. Summary

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

Mockservr Documentation, Release latest

(continued from previous page)

}
}

The endpoint is then available through different HTTP requests:

curl -XGET 'http://localhost:8080/foo'
curl -XPOST 'http://localhost:8080/foo'
curl -XPUT 'http://localhost:8080/foo'

1.3.5 object Validator

The object Validator in itself does not perform any validation. Instead, the value is an object, in which one or more
validators are defined for each object attribute. Validation of object Validator will perform recursively.

1.3.6 typeOf Validator

The typeOf Validator validates that the given value corresponds to the expected type.

Listing 62: YAML

http:
request:

path: '/foo'
method:
type: 'typeof'
value: 'string'

response:
body: 'Hello World!'

Listing 63: JSON

{
"http": {

"request": {
"path": "/foo"
"method": {
"type": "typeof",
"value": "string"

}
},
"response": {
"body": "Hello World!"

}
}

}

The example above will match any incoming request, as method is always a string.

As Mockservr is using Javascript, running the typeOf validator against null won’t be working as expected.
Use object Validator with null value instead.

1.3. Validators 27

Mockservr Documentation, Release latest

1.4 API

Mockservr exposes an HTTP API which allow to get information about current endpoints, and to update them if
needed. This API is available through HTTP queries on http://localhost:4580 (the API is exposed through the port
4580 of the Mockservr’s container).

1.4.1 API Endpoints

All endpoints are JSON endpoints (Content-Type: application/json) and must be prefixed with /api.

/api endpoint

GET method

The response is an object with a single attribute httpEndpoints, it contains the number of endpoints currently served
by Mockservr.

/api/http-endpoints endpoint

GET Method

The response is a collection of all HTTP endpoints cuurrently served by Mockservr. The response includes the internal
ID of the endpoint and the source (mock file or API).

POST method

It expects a JSON body as defined in HTTP Mocking, defining an endpoint with a Request and a Response.

The response contains the newly created endpoint with its ID and source. If any error occurred, the response is an
HTTP 400 response with a json object that contains all encountered errors.

/api/http-endpoints/:id endpoint

GET Method

The response is an object defining the endpoint corresponding to the given :id.

DELETE method

Deletes the endpoint from Mockservr. The response is an HTTP 204 response. If any error occurred, the response is
an HTTP 400 response with a json object that contains all encountered errors.

Note: DELETE method does not delete the mock file, if the target endpoint is defined in a mock file.

28 Chapter 1. Summary

	Summary
	Quickstart
	System requirements
	Running with docker
	Running with docker-compose

	HTTP Mocking
	Overview
	Endpoint
	Request
	Response

	Validators
	equal Validator
	range Validator
	regex Validator
	anyOf Validator
	object Validator
	typeOf Validator

	API
	API Endpoints

